
2.B Algorithm Specifications and Supporting

Documentations

2.B.2 STATEMENT

of the NaSHA’s estimated computational

efficiency and memory requirements in

hardware and software

We have programmed NaSHA hash algorithm in HDL/Verilog language
using free (Nisc) System Generator - Center for Embedded Computer Sys-
tems - University of California and with Xilinx ISE 10.1 application we
mapped the algorithm in Virtex 2 device family. Projected logic utilizations
are given in Table 1.

No. No. Slice No. 4 input No. bounded No. MULT No.
Device Family Slices Flip Flops LUTs IOBs 18x18s GCLKs

virtex2
Device xc2v2000/ 5802/ 1264/ 10679/ 67/624 3/56 2/16

Package ff896 10752 21504 21505
Speed -6

Table 1: Projected logic utilizations of different FPGA platforms

Starting memory requirements for implementing NaSHA algorithm are
quite small, only 0.625KB (0.25KB for starting bijection and 0.375 KB for
48 64-bit initial values).

1 NIST SHA-3 Reference Platform

1.

a. Description of the platform: Wintel personal computer, with

1



an Intel Core 2 Duo Processor, 2.4GHz clock speed, 2GB RAM, running
Windows Vista Ultimate 32-bit (x86) Edition. Compiler: the ANSI C
compiler in the Microsoft Visual Studio 2005 Professional Edition.

b. Speed estimate: A comparison of NaSHA-(m, 2, 6) performance in
Cycles/Byte Versus Message on 32-bit architecture, where m ∈ {224, 256, 384,
512} is given in the Table 2.

Length (bytes) 1 10 100 1000 10000 100000
NaSHA–(224, 2, 6) 3018.00 303.20 55.24 40.64 39.35 38.97
NaSHA-(256, 2, 6) 3039.00 299.70 55.24 40.58 39.35 39.01
NaSHA-(384, 2, 6) 5629.00 567.10 56.15 39.22 38.07 37.64
NaSHA-(512, 2, 6) 5867.00 586.70 58.25 39.47 38.10 38.97

Table 2: Performance in Cycles/Byte Versus Message of NaSHA-(m, 2, 6),
where m ∈ {224, 256, 384, 512} on 32-bit architecture

The set up of NaSHA hash algorithm requires 71 cycles for NaSHA-
(224, 2, 6) and NaSHA-(256, 2, 6) and 85 cycles for NaSHA-(384, 2, 6) and
NaSHA-(512, 2, 6).

c. Speed/memory tradeoffs: One way to change NaSHA perfor-
mances is to take as starting bijection a permutation of order 216, instead
of 28. The cost of this replacement is the usage of larger memory of 64KB,
instead of 0.25KB. In that case the smallest works used in the algorithm
will consist of 16 bits, instead of 8 bits used in the present algorithm. In
such a way, by decreasing the number of operations, we can increase the
performances. On the other side, searching on a larger table will decrease
performances again. It is an open question the behavior of the overall per-
formances in this case. Another problem is the construction of suitable
permutation of order 216, that we could not resolve, and we could not make
a comparison between these two options.

We can speed the performances of NaSHA-(m, k, 6), m ∈ {224, 256, 384,
512}, by working with quasigroups of order 2128 or 2256 (i.e., for r = 7 or
r = 8). Our opinion is that in that case, the security will be somewhat
weakened if permutation of order 28 is used. We think that the same level
of security as NaSHA-(m, k, 6) can be obtained for NaSHA-(m, k, 7) if we
use a permutation of order 216.

If we use a higher complexity k = 4, instead of k = 2, we are obtain-
ing speed slowdowns by factors that ranges from 1.75 to 1.9 for NaSHA-

2



(224, k, 6) and NaSHA-(256, k, 6) and from 1.78 to 2 for NaSHA-(384, k, 6)
and NaSHA-(512, k, 6).

2.

a. Description of the platform: Wintel personal computer, with
an Intel Core 2 Duo Processor, 2.4GHz clock speed, 2GB RAM, running
Windows Vista Ultimate 64-bit (x64) Edition. Compiler: the ANSI C
compiler in the Microsoft Visual Studio 2005 Professional Edition.

b. Speed estimate: A comparison of NaSHA-(m, 2, 6) performance in
Cycles/Byte Versus Message on 64-bit architecture, where m ∈ {224, 256, 384,
512} is given in the Table 3.

Length (bytes) 1 10 100 1000 10000 100000
NaSHA-(224, 2, 6) 1912.00 196.10 37.60 28.84 28.26 28.31
NaSHA-(256, 2, 6) 1968.00 198.90 37.88 29.07 28.39 28.43
NaSHA-(384, 2, 6) 3977.00 402.60 40.19 30.30 29.77 29.39
NaSHA-(512, 2, 6) 4075.00 406.80 40.68 30.33 29.65 29.39

Table 3: NaSHA Performance in Cycles/Byte Versus Message Length on
64-bit architecture

The set up of of NaSHA hash algorithm requires 15 cycles for NaSHA-
(224, 2, 6) and NaSHA-(256, 2, 6) and 22 cycles for NaSHA-(384, 2, 6) and
NaSHA-(512, 2, 6).

c. Speed/memory tradeoffs: If we use a higher complexity k = 4,
instead of k = 2, we are obtaining speed slowdowns by factors around 2 for
NaSHA-(m, k, 6), m ∈ {224, 256, 384, 512}2.

2 8-bit processor

a. Description of the platform: Intel 8052AH, 12MHz clock speed, 8
KB ROM, 256B on-chip RAM. Environment: µVision IDE/ Debugger/
Simulator, RTX-51 Full OS Compiler: KEIL C51 ANSI C compiler.

b. Speed estimate: A comparison of NaSHA-(m, 2, 6) performance in
Cycles/Byte Versus Message on 8-bit architecture, where m ∈ {224, 256, 384,
512} is given in the Table 4.

This is surely not the optimal implementation for an 8-bit architec-

3



Length (bytes) 1 10 100 1000 10000 100000
NaSHA-(224, 2, 6) 531919.50 53114.85 5274.66 890.54 397.22 358.70
NaSHA-(256, 2, 6) 544516.50 54374.55 5400.63 903.14 398.48 358.83
NaSHA-(384, 2, 6) 821146.50 82037.55 8166.93 1178.76 406.64 358.69
NaSHA-(512, 2, 6) 911539.50 91076.85 9070.86 1269.14 415,67 359,60

Table 4: NaSHA Performance in Cycles/Byte Versus Message Length on
8-bit architecture

ture. The set up of NaSHA algorithm requires 1099272 cycles for NaSHA-
(224, 2, 6), 1099512 cycles for NaSHA-(256, 2, 6), 1385004 cycles for NaSHA-
(384, 2, 6) and 1385244 cycles NaSHA-(512, 2, 6). Estimated working mem-
ory is 62KB.

We want to acknowledge Simona Samardziski for her 8-bit implementa-
tion of NaSHA hash algorithm and hardware estimations.

c. Speed/memory tradeoffs: If instead of k = 2 in NaSHA-(m, k, 6),
m ∈ {224, 256, 384, 512}, we use higher complexity k = 4, we obtain slow-
downs by factors around 2.

4


