
2.B Algorithm Specifications and Supporting

Documentations

2.B.5 Analysis of the NaSHA hash

algorithm with respect to known attacks

NaSHA family of cryptographic hash function use Merkle-Damg̊ard do-
main extender with standard Merkle-Damg̊ard strengthening. It has incor-
porated also wide-pipe design of Lucks [12, 13] and Coron’s [2] suggestions.
Compression function of NaSHA is function from {0, 1}4n to {0, 1}4n and
then only 2n bits are kept for the next iterative step. The length of chaining
variable is two times wider than the final digest value. With this kind of
design we gain resistant to some generic attacks like: Joux multicollision
attack [6], length extension attack, Dean fixed point attack [4], Kelsey and
Schneier long message 2nd preimage attack [7], Kelsey and Kohno herding
attack [8] and 2nd collision attack.

1 Choice of starting bijection and initial values -
no trap-doors

We use as starting bijection f : Z8
2 → Z8

2 for creating extended Feistel
networks a well known and well examined function - the improved AES
S-box with the APA structure from Cui and Cao [3].

We considered several possibilities as choice of NaSHA S-box: AES S-
box [1], improved AES S-box from Liu and all [11] and improved AES S-
box with the APA structure from Cui and Cao [3]. All three runners have
some proc and cons. The AES S-box is the most famous and the most
investigated S-box in cryptology, with good differential and linear resistance
and high algebraic degree. But it has simple algebraic structure with only
9 terms. The improved AES S-boxes has also good differential resistance
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with differential 4-uniformity and good linear resistance. They have the
same algebraic degree as AES S-box, but they have much bigger algebraic
complexity of 255 terms for first and 253 terms for second S-box. Their
inverse S-box has high algebraic complexity of 255 terms as AES inverse
S-box. But both are not enough studied from other authors. Our winner is
the third solution because of its algebraic complexity and because it is little
bit more studied than the second solution.

In the case of a suspicion a trapdoor being built into the hash, the current
S-box can be replaced by any of the other two candidates.

The initial values are randomly generated. If somebody has suspicions of
NaSHA initial chaining values, they can be replaced by any others, without
changing the security or the performances of NaSHa hash function.

2 Resistance to attacks that change all the addi-
tions by XORs

The compression function of NaSHA-(m, k, r) uses additions modulo 232 and
264, XORs and left rotations, so we have to examine attacks that change
all the additions by XORs in NaSHA-(m, k, r). It is important to mention
the work of Lipmaa and Moriai [9], which constructed efficient algorithms
for computing differential properties of addition modulo 2n, the work of
Lipmaa,Wallen and Dumas [13], which constructed linear-time algorithm
for computing the additive differential probability of XOR, and the work of
Paul and Preneel [15].

NaSHA-(m, k, r) is resistant to these kind of attacks, because it is using
extended Feistel networks [14], which incorporate operations with 8, 16, 32
and 64-bits operations and table lookups, instead of using only combinations
of 32 or 64-bits words. Additionally, having in mind that the compression
function of NaSHA-(m, k, r) is a function from {0, 1}4n to {0, 1}4n, at this
moment we can not see that it is possible to find concrete values of the
arguments of this function such that the additions will behave as XORs.

3 Resistance to linear and differential attacks

Recent collision attacks on some hash functions [16, 17, 18] are in fact dif-
ferential attacks that involve modular integer subtraction or exclusive-or as
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a measure of difference, and some kind of message modification techniques.
There are several strategies that one can employ to prevent the success of
these attacks. The first one is to attempt to prevent the existence of any
”good” differential (a differential path that leads to (near) collisions and
holds with probability greater than 2−n/2), like wide trail strategy for block
ciphers. The second strategy would be to reduce the success probability
of the attack with restraining the power of the message modification tech-
niques. A third possibility is to consider situations in which single message
bits are affecting multiple blocks or maybe entire hash.

The NaSHA-(m, k, r) hash algorithm allows each bit of an input message
M to influence almost all bits of the resulting hash value. To verify this let
represent S(i) as

S(i) = S
(i)
1 ||S(i)

2 ||S(i)
3 || . . . ||S(i)

2t−2||S(i)
2t−1||S(i)

2t .

We have that every bit from the bit string S(i) influences all blocks S
(i+1)
j

with even subindexes (j = 2, 4, 6, . . . , 2t) of the bit string S(i+1). Namely, by
Step 6 of NaSHA hash algorithm, we apply the transformations LinTr2t

2n+2

and MT on S(i). The linear transformation besides diffusion spread out the
influence of bits. The MT transformation is composition of Al and ρ(RAl)
transformations. Now, if b is a bit from a block S

(i)
j of S(i), then all blocks

of Al(S(i)) from the j + 1-th until 2t-th are influenced by b. After that, all
blocks of MT (Al(S(i))) will be influenced by b. So we have the following
theorem.

Theorem 1 Every bit from the input message M influences all blocks of
the hash value NaSHA-(m, k, r)(M).

Proof. By the above considerations we have that each bit of M influ-
ences all blocks with even subindexes of S(N). Since NaSHA-(m, k, r)(M) =
A4||A8|| . . . ||A2t−4||A2t, where A1||A2||A3|| . . . ||A2t = (LinTr2t

2n+2(S(N))),
all blocks of NaSHA-(m, k, r)(M) are influenced by each bit of M . ¤

Much more than Theorem 1 is stating, the internal structure of the
quasigroup operation and the addition modulo 2r allows us to conclude that
almost all bits of the hash value are influenced by each bit of the input
message.

Also, we have to stress out that our starting bijection has also good re-
sistance to differential attacks with its differential 4-uniformity and its good
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resistance to linear attacks with nonlinearity of 112. All these together give
as good resistance to any attack that will involve differential cryptanalysis.

The nonlinearity of 112 of the starting bijection f is inherited in the
constructed extended Feistel networks in our implementation, so FA1,B1,C1

and FA2,B2,C2 have also a nonlinearity of 112. We find out that we have
gained resistance of NaSHA-(m, k, r) to any attack that will involve liner
cryptanalysis.

Because of the inherited nonlinearity of 112 of the extended Feistel net-
works FA1,B1,C1 and FA2,B2,C2 , that are used for defining the quasigroup
operations in our NaSHA-(m, 2, 6) implementation, NaSHA-(m, 2, 6) is re-
sistant to recent Cube attack of Dinur and Shamir [5], that can be applied
to wide rang of cryptographic primitives which are provided as a black box
(even when nothing is known about its internal structure) as long as at least
one output bit can be represented by (an unknown) polynomial of relatively
low degree in the secret and public variables.
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