On the Second Conditional Collision Attack on NaSHA-384/512

S. Markovski^[1], A. Mileva^[2] and V. Dimitrova^[1]

^[1]University "Ss Cyril and Methodius", Faculty of Sciences, Institute of Informatics, P. O. Box 162, Skopje, Republic of Macedonia (smile@ii.edu.mk)

^[2] University "Goce Delčev", Faculty of Informatics, Štip, Republic of Macedonia (aleksandra.mileva@ugd.edu.mk)

Abstract

Recently, a new collision attack on NaSHA-384/512 have been proposed by Z. Ji and D. Li [2]. The claimed complexity of the attack is 2^{128} with probability of $(1 - \frac{2}{2^{64}-1})^2 \gg \frac{1}{2}$. We show that the claimed probability of their attack is not correct. The attack is based on an assumption that a system E of two quasigroup equations has a solution. The attacker do not give any evidence why the system E has a solution, and their attack is based only on their believes that they can find a solution after making 2^{128} checks. Unless the attacker provide a proof that the system E do have a solution and that the solution can be found after 2^{128} checks, their attack is irrelevant.

1 Introduction

Recently, a new collision attack on NaSHA-384/512 have been proposed by Z. Ji and D. Li [2]. NaSHA(m,k,r) is a new family of hash functions [3] proposed for SHA-3, and the attack is on its 384-bit and 512-bit hash versions. The claimed complexity of the attack is 2^{128} with probability of $(1 - \frac{2}{2^{64}-1})^2 \gg \frac{1}{2}$. What is actually presented in their paper is a system E of two quasigroup equations with fife variables that has a small probability to have a solution, i.e. the probability is $(1 - \frac{2}{2^{64}-1})^2$. Moreover, they only calculate the probability each equation separately to have a solution, which is $(1 - \frac{2}{2^{64}-1})$ each. But the system E is a system of two mutually dependable equations of fife variables, and it is not true that the probability p to solve this system is $(1 - \frac{2}{2^{64}-1})^2$. The probability p is quite unknown, there is no theory for solving quasigroup equations, and a system of quasigroup equations may have no solutions at all. Unless the attackers provide a proof that the system E do have a solution and that the solution can be found after 2^{128} checks, their attack is irrelevant.

We note that the attack in [2] is based on the same idea as the attack of [1], and all of the arguments given in [4] can be applied to the attack of [2]. Nevertheless, here we present the attack of [2] and give comments of it.

2 Short description of NaSHA-(384,2,6) and NaSHA-(512,2,6)

We give a short description of NaSHA-(384,2,6) and NaSHA-(512,2,6) at first.

Let denote the 1024-bit initial chaining value of NaSHA-(512,2,6) by $H = H_1 ||H_2|| \dots ||H_{16}$ and let denote a 1024-bit message block by $M = M_1 ||M_2|| \dots ||M_{16}$, where H_i and M_i are 64-bits words. Then, the state of the compression function is defined to be the 2048-bit word

$$S = M_1 ||H_1||M_2||H_2|| \dots ||M_{16}||H_{16},$$

represented as 32 64-bit words $S = S_1 ||S_2|| \dots ||S_{32}$. Then NaSHA transform the word S into the word $S' = \mathcal{MT}(LinTr_{512}^{32}(S))$, where $LinTr_{512}$ and \mathcal{MT} are defined as

$$LinTr_{512}(S_1||S_2||\dots||S_{31}||S_{32}) = (S_7 \oplus S_{15} \oplus S_{25} \oplus S_{32})||S_1||S_2||\dots||S_{31},$$
$$\mathcal{MT} = \rho(\mathcal{RA}_{l_1}) \circ \mathcal{A}_{l_2}.$$

The definition of $\rho(\mathcal{RA}_{l_1})$ is irrelevant for the attack, and the transformation \mathcal{A}_{l_2} is defined iteratively by

$$\mathcal{A}_{l_2}(x_1, \dots, x_{32}) = (z_1, \dots, z_{32}) \Leftrightarrow z_j = \begin{cases} (l_2 + x_1) * x_1, \ j = 1\\ (z_{j-1} + x_j) * x_j, \ 2 \le j \le 32 \end{cases}$$
(1)

Here, l_2 is a constant, \oplus denotes the bitwise xoring, + denotes the addition modulo 2^{64} and * denotes a quasigroup operation defined by an extended Feistel network F_{A_1,B_1,C_1} as $x * y = F_{A_1,B_1,C_1}(x \oplus y) \oplus y$. If there is another message block for processing, every second 64-bit word from S' goes as chaining value in the next iteration. If the processed block is the last one, every forth 64-bit word from S' goes as hash result. For NaSHA-(384,2,6) is the same, but final hash is modulo 2^{384} .

The extended Feistel network F_{A_1,B_1,C_1} is a permutation of the set $\{0,1\}^{64}$ and is defined in NaSHA by

$$F_{A_1,B_1,C_1}(L||R) = (R \oplus A_1)||(L \oplus B_1 \oplus f_{a_1,b_1,c_1,a_2,b_2,c_2,a_3,b_3,c_3,\alpha,\beta,\gamma}(R \oplus C_1))$$

where $a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3$ are 8-bit words, α, β, γ are 16-bit words, A_1, B_1, C_1 are 32-bit words, L, R are 32-bit variables and f is a suitably defined function. So, the quasigroup operation * in NaSHA used in transformation \mathcal{A}_{l_2} depends on 15 parameters $a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3, \alpha, \beta, \gamma, A_1, B_1,$ C_1 . These parameters and the constant l_2 are different in every iteration of the compression function and depend on the processed message block. They are obtained from the equalities:

$$l_{2} = S_{3} + S_{4},$$

$$a_{1}||b_{1}||c_{1}||a_{2}||b_{2}||c_{2}||a_{3}||b_{3} = S_{5} + S_{6}, \quad c_{3} = a_{1},$$

$$\alpha||\beta||\gamma||\alpha_{2} = S_{7} + S_{8},$$

$$A_{1}||B_{1} = S_{11} + S_{12}, \quad C_{1}||A_{2} = S_{13} + S_{14},$$

the values α_2 and A_2 are irrelevant for the attack.

3 Setting the attack parameters

The attack is based on a differential pattern obtained by using the difference 0xFFFF00000000FFFF. Several observations are obtained.

1) Let x = 0xFFFFFFF00008000 and a = 0x7FFF80017FFF8000 be 64-bit words. Then for the word $y = x \oplus \Delta x$ the following equality is true:

$$(a+x) * x = (a+y) * y$$

and

$$a_L = ((a+x)*x)_I$$

where \oplus denotes the 64-bit XOR, + denotes the addition modulo 2^{64} , a_L means the left half bits of a and * denotes the quasigroup operation defined by an extended Feistel network $F_{A,B,C}$. Here A, B, C are parameters that are computed from the input message and the chaining values.

2) If the parameters $a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3, \alpha, \beta, \gamma$ are known, i.e., the function f is defined, then the parameters A, B, C can be chosen such that the following equalities hold true:

$$(a+x) * x = a = (a+y) * y.$$

3) The initial chaining value of NaSHA is $H = H_1 ||H_2|| \dots ||H_{16}$ and let take an input message $M = M_1 || M_2 || \dots || M_{16}$, where H_i and M_i are 64-bits words. Only the words M_i can be chosen in a suitable way a collision attack to be realized. The idea of the attack is to find two different 1024-bits input messages M and M' such that

$$\mathcal{A}_{l_2}(LinTr_{512}^{32}(M_1||H_1||M_2||H_2||\dots||M_{16}||H_{16})) =$$

 $= \mathcal{A}_{l'_2}(LinTr_{512}^{32}((M'_1||H_1||M'_2||H_2||\dots||M'_{16}||H_{16})).$ The values of l_2 and l'_2 are defined after $LinTr_{512}^{32}$ is applied.

4) Let us denote

$$LinTr_{512}^{32}(M_1||H_1||M_2||H_2||\dots||M_{16}||H_{16}) = S_1||S_2||\dots||S_{32},$$

 $LinTr_{512}^{32}(M_1'||H_1||M_2'||H_2||\dots||M_{16}'||H_{16}) = S_1'||S_2'||\dots||S_{32}'.$

Then, M (as well as M') can be recovered from $S_1||S_2||\ldots||S_{32}$ by using $LinTr_{512}^{-1}$.

4 Collision attacks on NaSHA

5) Take x = 0xFFFFFFF00008000, a = 0x7FFF80017FFF8000, $\Delta x =$ 0xFFFF0000000FFFF and $y = x + \Delta x$.

6) Suppose that the input messages M and M' satisfy the conditions $M_1 = M'_1, M_2 = M'_2 \oplus \Delta x, M_3 = M'_3 \oplus \Delta x, M_4 = M'_4 \oplus \Delta x, M_5 = M'_5, M_6 = M'_5$ $M'_{6} \oplus \Delta x, M_{7} = M'_{7} \oplus \Delta x, M_{8} = M'_{8}, M_{9} = M'_{9} \oplus \Delta x, M_{10} = M'_{10}, M_{11} =$ $M'_{11} \oplus \Delta x, M_{12} = M'_{12}, M_{13} = M'_{13}, M_{14} = M'_{14}, M_{15} = M'_{15} \oplus \Delta x, M_{16} = M'_{15} \oplus \Delta x, M_{16} = M'_{16} \oplus \Delta x, M_{16}$ M'_{16} . Then we have that $S_{11} = S'_{11} \oplus \Delta x, S_{12} = S'_{12} \oplus \Delta x, S_{25} = S'_{25} \oplus$ $\Delta x, S_{28} = S'_{28} \oplus \Delta x, S_{29} = S'_{29} \oplus \Delta x, S_{32} = S'_{32} \oplus \Delta x.$

7) Now choose the values for the words S_i and S'_i in a suitable manner. By using $LinTr_{512}^{-1}$ corresponding messages M and M' will be obtained.

7.1) Take $S_{12} = y$, $S_{11} = S_{25} = S_{26} = S_{27} = S_{28} = S_{29} = S_{30} = S_{31} = S_{32} = x$ and $S'_9 = x, S'_{11} = S'_{25} = S'_{26} = S'_{27} = S'_{28} = S'_{29} = S'_{30} = S'_{31} = S'_{32} = y$.

7.2) Take $S_9 = S'_9 = y_9, S_{10} = S'_{10} = y_{10}, S_{13} = S'_{13} = y_{13}, S_{14} = S'_{14} = y_{14}, S_{22} = S'_{22} = y_{22}, S_{24} = S'_{24} = y_{24}$, where y_i are unknown (free) words.

7.3) By using the equality of [2], the words $S_1, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_{15}, S_{16}, S_{17}, S_{18}, S_{19}, S_{20}, S_{21}, S_{23}$ can be expressed by the initial chaining value H, the word x and the unknown words $y_9, y_{10}, y_{13}, y_{14}, y_{22}, y_{24}$. Hence, they are functions of $y_9, y_{10}, y_{13}, y_{14}, y_{22}, y_{24}$.

7.4) The parameters $a_1, b_1, c_1, a_2, b_2, c_2, a_3, b_3, c_3, \alpha, \beta, \gamma, A_1, B_1, C_1$ and the constants l_2 , l'_2 now can be expressed as functions of $y_9, y_{10}, y_{13}, y_{14}, y_{22}, y_{24}$ as well:

$$l_2 = l'_2 = S_3(y_9, y_{10}, y_{13}, y_{14}, y_{22}, y_{24}) + S_4(y_9, y_{10}, y_{13}, y_{14}, y_{22}, y_{24}),$$

 $a_1||b_1||c_1||a_2||b_2||c_2||a_3||b_3 = S_5(y_9, y_{10}, y_{13}, y_{14}, y_{22}, y_{24}) + S_6(y_9, y_{10}, y_{13}, y_{14}, y_{22}, y_{24}),$

$$\begin{split} \alpha ||\beta||\gamma||\alpha_2 &= S_7(y_9,y_{10},y_{13},y_{14},y_{22},y_{24}) + S_8(y_9,y_{10},y_{13},y_{14},y_{22},y_{24}),\\ A_1||B_1 &= S_{11} + S_{12},\\ C_1||A_2 &= y_{13} + y_{14}. \end{split}$$

7.5) The parameters A_1 and B_1 are fixed and $a_L = ((a + x) * x)_L = ((a + y) * y)_L$, so only the parameter C_1 of F_{A_1,B_1,C_1} have to be determined in such a way the equality $a_R = ((a + x) * x)_R = ((a + y) * y)_R$ to be satisfied. For that aim at first fixed values to $y_9, y_{10}, y_{14}, y_{22}, y_{24}$ have to be given, and after that the values for y_{13} can be computed. Note that now $S_{13} = y_{13}$ is function of $y_9, y_{10}, y_{14}, y_{22}, y_{24}$.

8) Note that after the values of $y_9, y_{10}, y_{14}, y_{22}$ and y_{24} are chosen, all the words S_i and S'_i are determined. We have to check if the equalities

 $\mathcal{A}_{l_2}(S_1||S_2||\dots||S_{32}) = \mathcal{A}_{l'_2}(S'_1||S'_2||\dots||S'_{32}) = z_1||z_2||\dots||z_{32}$ hold for some z_i .

The differential pattern of the attack is defined in such a way that

 $z_{10}||z_{11}||z_{12} = a||a||a|$

Then only the values of z_1, \ldots, z_9 and z_{13}, \ldots, z_{23} have to be found.

8.1) We can compute $z_1 = (l_2 + S_1) * S_1, z_2 = (z_1 + S_2) * S_2, z_3 = (z_2 + S_3) * S_3, \ldots, z_9 = (z_8 + S_9) * S_9$. Note that z_1, \ldots, z_9 are functions of $y_9, y_{10}, y_{14}, y_{22}, y_{24}$.

Now, the equality $z_{10} = a$, i.e., $(z_9 + S_{10}) * S_{10} = a$, has to be satisfied, in order the transformations \mathcal{A}_{l_2} and $\mathcal{A}_{l'_2}$ to be fulfilled.

8.2) If $z_{10} = a$ holds true, we can compute $z_{13} = (a + S_{13}) * S_{13}, z_{14} = (z_{13}+S_{14})*S_{14}, \ldots, z_{23} = (z_{22}+S_{23})*S_{23}$. Note that z_{13}, \ldots, z_{23} are functions of $y_9, y_{10}, y_{14}, y_{22}, y_{24}$.

Now, the equality $z_{24} = a$, i.e., $(z_{23} + S_{24}) * S_{24} = a$, has to be satisfied, in order the transformations \mathcal{A}_{l_2} and $\mathcal{A}_{l'_2}$ to be fulfilled.

Proposition 1 If there is a collision on NaSHA-384/512 obtained by the attack as explained in 1) – 8), then the system E of two quasigroup equations with fife variables

 $\left\{ \begin{array}{l} (z_9(y_9,y_{10},y_{14},y_{22},y_{24})+S_{10}(y_9,y_{10},y_{14},y_{22},y_{24}))*S_{10}(y_9,y_{10},y_{14},y_{22},y_{24})=a\\ (z_{23}(y_9,y_{10},y_{14},y_{22},y_{24})+S_{24}(y_9,y_{10},y_{14},y_{22},y_{24}))*S_{16}(y_9,y_{10},y_{14},y_{22},y_{24})=a\\ has\ a\ solution,\ where\ z_i\ are\ obtained\ iteratively\ as\ in\ 8). \end{array} \right.$

As far as we know, there is no efficient method for solving systems of quasigroup equations, except checking all possible solutions. So, for the system E we have to make up to 2^{320} checks to find a solution, if any. Of course, that is infeasible with the current technology.

The attackers are not solving this system. They only choose $y_9, y_{10}, y_{14}, y_{22}, y_{24}$ randomly and after calculating the parameters of quasigroup operations, only check if the system E has a solution. They only calculate the probability each equation separately to have a solution, which is $(1 - \frac{2}{2^{64}-1})$ each. But the system E is a system of two mutual dependable equations of fife variables, and probability to solve this system in total is not $(1 - \frac{2}{2^{64}-1})^2$. This probability is unknown, because there are cases when this kind of systems do not have solutions (see the Example 1 and 2 below).

Example 1 The system of two equations with 4 unknowns

$$((((2+y+z)*(x+z+2)+3+x)*(1+y)+2+z)*(z+1))*(x+1) = a) = (((3+x+y)*(2+y)+1+z+x)*(x)+x+z+y)*(x+y+2) = a) = a$$

has no solutions in the quasigroup

*	0	1	2	3
0	1	0	3	$\overline{2}$
1	2	1	0	3
2	3	2	1	0
3	0	3	2	1

Example 2 The system of two equations with 4 unknowns

x * y = 0,(1 + x + 2z) * y = 0

$$(1 + x + 2z) * y = 0$$

has no solutions in the quasigroup

*	0	1	2	3	4	5	6	7
0	7	4	6	2	1	0	3	5
1	1	2	5	7	6	3	4	0
2	3	5	4	0	2	6	7	1
3	4	3	0	1	5	2	6	7
4	0	1	3	4	7	5	2	6
5	6	7	2	3	0	1	5	4
6	2	6	1	5	4	7	0	3
7	5	0	7	6	3	4	1	2

5 Conclusion

The attack given in [2] is very similar to the previous attack given in [1]. Nevertheless, it is not a valuable attack on NaSHA-384/512, because we do not know if the system of quasigroup equations $E : z_{10} = a, z_{24} = a$ with fife unknown variables has a solution. So, the claimed probability $(1-\frac{2}{2^{64}-1})^2 \gg \frac{1}{2}$ that after 2^{128} checks, a solution of the system of equations E can be found is not true. In fact, it is highly probable that the system E does not have solutions at all.

References

 [1] L. Ji, X. Liangyu and G. Xu, Collison attack on NaSHA-512 http://eprint.iacr.org/2008/519

- [2] Z. Ji and D. Li, Collison attack on NaSHA-384/512 http://eprint.iacr.org/2009/026
- [3] Smile Markovski and Aleksandra Mileva, Algorithm Specications of NaSHA, 2008 http://inf.ugd.edu.mk/images/stories/file/Mileva/Nasha.htm
- [4] S. Markovski, A. Mileva, V. Dimitrova and D. Gligoroski, On a Conditional Collision Attack on NaSHA-512 http://eprint.iacr.org/2009/034