
2.B Algorithm Specifications and Supporting

Documentations

2.B.4 STATEMENT

of the expected strength of the

NaSHA hash algorithm

1 Resistance to preimage and 2nd preimage attacks

The quasigroup used for NaSHA-(256, 2, 6) is of order 2n = 264 and MT
is performed on t = 16 64-bit words, so by Proposition 5, given in Part
2.B.1, one can find a second preimage or collision after around 268 checks,
but under condition that the attacker knows the quasigroup operations and
the values of the leaders. The quasigroup operations

∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1

and
∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2

of NaSHA-(256, 2, 6) hash function and the leaders l1, l2 depend on the
input values of MT .

Let MT (x1||x2||x3|| . . . ||x16) = (d1, d2, . . . , d16), where xi are 64-bit
unknowns and di are given 64-bit words. Let Al2(x1||x2||x3|| . . . ||x16) =
z1||z2||z3|| . . . ||z16 and put yi = ρ(zi, 32) for i = 1, 2, . . . , 16. Then we obtain
the following system of functional equations with unknowns xi and yi (i.e.,
zi), unknown quasigroup operations • = ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α1,β1,γ1,A1,B1,C1

1

and ? = ∗a1,b1,c1,a2,b2,c2,a3,b3,c3,α2,β2,γ2,A2,B2,C2 , and unknown leaders l1, l2:





(l2 + x1) • x1 = y1

(y1 + x2) • x2 = y2

. . .
(y15 + x16) • x16 = y16

y16 ? (y16 + l1) = d16

y15 ? (y15 + d16) = d15

. . .
y1 ? (y1 + d2) = d1.

(1)

For solving the system (1) we need at first to define the quasigroup
operation • and ? and the leaders l1 and l2. So, we have to choose 8 bytes
a1, b1, c1, a2, b2, c2, a3, b3 (note that c3 = a1), 6 16-bit words α1, β1, γ1, α2, β2,
γ2, 6 32-bit words A1, B1, C1, A2, B2, C2 and 2 64-bit words l1, l2, and that
can be done in 2480 ways. Fix a choice of all of the constant words and then,
after around 268 checks, a solution x1, x2, x3, . . . , x16 of (1) can be found.
Now, we have to see if the obtained solution (x1, x2 . . . , x16) satisfies the
equalities

x1 ⊕ x2 = l1, (2)

x3 ⊕ x4 = l2, (3)

x5 ⊕ x6 = a1||b1||c1||a2||b2||c2||a3||b3, (4)

x7 + x8 = α1||β1||γ1||α2, (5)

(x9 + x10)(mod 232) = β2||γ2, (6)

x11 + x12 = A1||B1, (7)

x13 + x14 = C1||A2, (8)

x15 + x16 = B2||C2. (9)

For each of the equalities (2)–(5), (7)–(9), we have that the probability to
be true is 2−64, so these seven equalities will be true with probability 2−448.
The equality (6) will be true with a probability 232. So, all the equalities
(2)–(9) will be true with probability 2−480. (Namely, there are (264)2 pairs
(x1, x2), and there are 264 different solutions of (2) when (2) is considered
as an equation with 2 unknowns x5, x6. So, the equality (2) is true with
a probability 2−64. The same discussion holds for the others equalities as
well.)

2

So, after having around 268 checks, we can find a solution of (1) with a
probability 2−480. The space of all possible values of (a1, b1, c1, a2, b2, c2, a3,
b3, α1, β1, γ1, α2, β2, γ2, A1, B1, C1, A2, B2, C2, l1, l2) consists of 2480 elements.
Then, after making 268 · 2480 = 2548 checks, a solution of (1) can be found
with probability 1− (1− 2−480)2

480 ≈ 0.53.

We conclude that NaSHA-(256, 2, 6) is 2nd preimage resistant under this
analysis. Consequently, it is preimage resistant with much higher complex-
ity, since in this cases only d4, d8, d12 and d16 are known (the hash value
of NaSHA hash is d4||d8||d12||d16). To discover the original image one has
to choose d1, d2, d3, d5, d6, d7, d9, d10, d11, d13, d14, d15 in such a way the true
values of y1, . . . , y16 of (1) to be find, and that can be done with probability
around (2−64)12.

The analysis given above for NaSHA-(256, 2, 6) holds true for NaSHA-
(224, 2, 6) too. So we give the following statement.

Statement 1 The best known preimage and second preimage attacks on
NaSHA-(224, 2, 6) and NaSHA-(256, 2, 6) are the generic attacks.

The same analysis holds true for NaSHA-(384, 2, 6) and NaSHA-(512, 2, 6).
(In this case, a slightly better results are obtained since the value of t is 32.)
So we give the following statement.

Statement 2 The best known preimage and second preimage attacks on
NaSHA-(384, 2, 6) and NaSHA-(512, 2, 6) are the generic attacks.

2 Collision resistance

For attacking the collision resistance we have to find (x1, . . . , x16) 6= (x′1, . . . , x
′
16)

such that MT (x1, x2, . . . , x16) = MT (x′1, x
′
2, . . . , x

′
16). We infer equations

of kind 



(l2 + x1) • x1 = y1

(y1 + x2) • x2 = y2

. . .
(y15 + x16) • x16 = y16

(10)





(l′2 + x′1) •′ x′1 = y′1
(y′1 + x′2) •′ x′2 = y′2
. . .
(y′15 + x′16) •′ x′16 = y′16

(11)

3





y16 • (y16 + l1) = y′16 •′ (y′16 + l′1)
y15 • (y15 + (y16 • (y16 + l1))) = y′15 •′ (y′15 + (y′16 •′ (y′16 + l′1)))
. . .
y1 • (y1 + (y2 • . . .) . . .) = y′1 •′ (y′1 + (y′2 •′ . . .) . . .).

(12)

Now, besides the equalities (2)–(9), we will have eight more

x′1 ⊕ x′2 = l′1, (13)

x′3 ⊕ x′4 = l′2, (14)

x′5 ⊕ x′6 = a′1||b′1||c′1||a′2||b′2||c′2||a′3||b′3, (15)

x′7 + x′8 = α′1||β′1||γ′1||α′2, (16)

(x′9 + x′10)(mod 232) = β′2||γ′2, (17)

x′11 + x′12 = A′1||B′
1, (18)

x′13 + x′14 = C ′
1||A′2, (19)

x′15 + x′16 = B′
2||C ′

2. (20)

Then, even we assume that we have a solution of the system of equa-
tions (12), after 21028 checks we can find a solution of (10) and (11) with
probability ≈ 0.5. So we have the following statement.

Statement 3 The best known collision attack on NaSHA-(224, 2, 6), NaSHA-
(256, 2, 6), NaSHA-(384, 2, 6) and NaSHA-(256, 2, 6) is the birthday attack.

We give the next statement too:

Statement 4 The best known collision attacks on m-bit hash function speci-
fied by taking a fixed subset of the candidate function’s output bits of NaSHA-
(224, 2, 6), NaSHA-(256, 2, 6), NaSHA-(384, 2, 6) and NaSHA-(512, 2, 6) is
the generic attack, by replacing the length of the message digest by m.

3 Resistance to length extension attacks

Generic length extension attack is an attack known upon Merkle-Damg̊ard
construction of hash functions. Let M be a message that consists of k
message blocks M = M1||M2|| . . . ||Mk, with hash result H(M). Two cases
are examined:

4

1. The last message block does not include message length and it must
be padded by 0’s. Then the hash result H(M) is an intermediate result.
Let suppose that the attacker knows the intermediate result H(M) and the
message length |M |, so he can process at least one more block Mk+1. If a
hash function is using an MD-straitening, the attacker encodes the message
length by a new block Mk+2, finding a new hash result of the message
M ||Mk+1 without knowing the message M .

2. The last message block does include message length, so hash result
H(M) is the final hash result. Let suppose that the attacker knows the hash
result H(M) and the message length |M |, so he can process at least one more
block Mk+1. Similarly as 1., the attacker encodes the message length in new
block Mk+2, finding a new hash result of the message M ||Mk+1 without
knowing the message M .

NaSHA-(m, k, r) has natural resistance against these generic attacks due
to the fact that use wide-pipe design of Lucks [5, 6] and Coron’s [3] sugges-
tions. In every iterative step of the compression function, we use 2n-bit
message blocks and 2n-bit chaining variable, so the strings of length 4n bits
are mapped to strings of length 4n bits and then only 2n bits are kept for
the next iterative step. More important is that the length of chaining vari-
able is at least two times wider that final digest value, and this is enough for
resistance of length extension attacks.

4 Support of HMAC, PRFs and
Randomized Hashing

HMAC, invented by Bellare and all [1, 2], is a widely used message authenti-
cation code and a pseudo random function generator based on cryptographic
hash functions. It takes a message of an arbitrary length and hashes it with
a secret key. For the same length of the message it calls the compression
function of the underlying hash function additionally three more times than
the MD construction. Also, HMAC is proved to be a pseudo random func-
tion under the assumption that the compression function of the underlying
hash function is a pseudo random function. It is defined as

HMAC(K, M) = H((K ⊕ opad)||H(K ⊕ ipad||M))

where H is hash function, K is the secret key, M is message, opad and ipad
are predefined constants.

5

Using the birthday paradox, a general distinguishing attack can be in-
duced on HMAC (from a random function), that require about 2n/2 messages
and easily can be converted into a general forgery attack on HMAC. There
are two so called differential and rectangle distinguishers (Kim and all [7])
of the general structure of HMAC, which can lead to distinguishing attack,
if HMAC is instantiated with hash function with a low difference propa-
gation. Rectangle distinguisher on HMAC cannot be use as better attack
then previous general attack, because its required data complexity is always
larger then 2n/2 messages. In our knowledge, NaSHA hash algorithm has
good difference propagation. We give the following statement.

Statement 5 NaSHA hash algorithm can be used as base of HMAC con-
struction.

Randomized hashing suggested by Halevi and Krawczyk [4], is a mode
of operation for cryptographic hash functions for use with standard digital
signatures and without necessitating of any changes in the internals of the
underlying hash function or in the signature algorithms. This mode provide
a safety net in case the (current or future) hash functions in use turn out
to be less resilient to collision search than initially thought. Let M be the
message consisting of k message blocks M = m1m2 . . . mk. Randomized
hashing with hash function H use random salt r for hashing message M as

Hr(M) = (r||m1 ⊕ r||m2 ⊕ r|| . . . ||mk ⊕ r)

Security of randomized hashing scheme is related to second-preimage
resistance properties of the compression function. We give the following
statement.

Statement 6 NaSHA hash algorithm can be used in randomized hashing
scheme.

References

[1] M. Bellare, R. Canetti and Hugo Krawczyk, Keying Hash Functions for
Message Authentication, Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, 1996, Proceedings, volume 1109 of LNCS, pages 1–15

6

[2] M. Bellare, R. Canetti and Hugo Krawczyk, Message Authentication
using Hash Functions - The HMAC Construction, RSA Laboratories’
CryptoBytes, Vol. 2, No. 1, Spring 1996

[3] J.-S. Coron, Y. Dodis, C. Malinaud and P. Puniya, Merkle-Damg̊ard
revisited: How to construct a hash function, CRYPTO 2005, LNCS
3621

[4] S. Halevi and H. Krawczyk, Strengthening Digital Signatures via Ran-
domized Hashing, (2007)

[5] S. Lucks, Design Principles for Iterated Hash Functions, Cryptology
ePrint Archive, Report 2004/253

[6] S. Lucks, A Failure-Friendly Design Principle for Hash Functions, ASI-
ACRYPT 2005, LNCS 3788 (2005), pp. 474–494

[7] J. Kim, A. Biryukov, B. Preneel and S. Hong, On the Security of HMAC
and NMAC Based on HAVAL, MD4, MD5, SHA-0 and SHA-1,

7

